

EVENT, DATE

PGHV Service

Maintenance concept – Circuit breaker

Speaker, position

Agenda

Maintenance concept – Why maintenance?

Criteria for maintenance

Factors affecting the life span of circuit breaker

- Ageing
- Mechanical endurance
- Electrical endurance

Life cycle status based actions and recommendations

Why maintenance?

- Circuit Breaker is an essential part of power system.
- Essential components within the Breaker are loosing the ability to fulfill its functionality due to various factors.
- Ageing
 - Environmental
 - Lack of maintenance
- Mechanical Endurance
- Electrical Endurance

A non maintained breaker may lead towards not having a breaker at all

Criteria for maintenance

- Ageing (Time based)
 - Aging refers to the set of chemical and physical changes of materials over the course of time, temperature and the environment.
 - In principal it's a running irreversible chemical and physical change of the material property
- Mechanical Endurance (Event based)
 - Number of operations
- Electrical Endurance (Event based)
 - Erosion of contacts material, Switched current
 - SF6 decomposition products
 - Exceeding the electrical lifetime will result in a major failure of the breaking chamber

Service Criteria

T/E based	Aging
Event based	Mechanical endurance
Event based	Electrical endurance

Circuit Breaker Life Span affected due to various Factor

- Ageing (Time based)
 - Due to natural condition, heat, light, diffusion, relaxation or corrosion
- Mechanical Endurance (Event based)
 - Different breaker types has different mechanical endurance.
- Electrical Endurance (Event based)
 - Operating at rated current and short circuit affects the lifespan.

Circuit Breaker Life Span affected due to Ageing

- Environmental factor
 - Where the breaker is located also plays an important role in the life span of circuit breaker
 - Pollution and humidity Flashover problems, corrosion of metal/aluminum parts and increased ageing of organic parts can be results of the above mentioned environmental factors.
 - High Ambient temperature Increased ageing of organic parts and control devices. For example grease vaporize more rapidly under these circumstances.
 - Low Ambient temperature Affects the grease and might cause slow overall mechanical movement.

Circuit Breaker Life Span affected due to Ageing

- Lack of maintenance
 - Failing to follow maintenance recommendations for the circuit breaker can shorten the lifespan of the circuit breaker as well as cause minor and major failures.

Circuit Breaker Life Span affected due to Ageing

Affected part

- Insulating part
 - Insulator
 - Insulating washer
- Synthetic parts
 - Gasket
 - Sealing
- Grease
 - Lubrication grease
 - Contact paste
 - Adhesive

Example - With aging of sealing and guide rings the nominal parameters of opening/closing times, velocity and force cannot be guaranteed any longer.

©ABB May 24, 2018 | Slide 8

ABB

Circuit Breaker Life Span affected due to various Factor

Mechanical Endurance (Event based)

- Different breaker types has different mechanical endurance.

Circuit Breaker Life Span affected due to Mechanical Factor

Mechanical Endurance (Event based)

- Number of Mechanical Operation.
- The circuit breaker mechanical lifetime will be reached after around 10,000 operations. (A mechanical operation means switching a few hundred ampere)

Product		Overhaul (Criteria)			
		Time Based (Years)			
Breaker Type	Technology	#	Mechanical (N)		
EDF SK 1-1	SF6/Spring	10	10,000		
ELF SF 2-1®	SF6/Pneumatic	10	10,000		
LTB 145 D1	SF6/Spring	10	10,000		
ELF SL 4-1	SF6/Pneumatic	10	10,000		
LTB 245 E1	SF6/Spring	10	10,000		
LTB 420 E2	SF6/Spring	10	10,000		
ELF SP 6-21/22	SF6/Pneumatic	10	10,000		
ELF SL 6-2	SF6/Pneumatic	10	10,000		

* Details derived from respective product manual , # May depend upon site condition N = Number of operation

Circuit Breaker Life Span affected due to Mechanical Factor

Due to wear, vibration, shock, seismic, general expendable items, mechanical friction

- Affected Parts
 - Contact finger
 - Bearing
 - Nozzle
 - Gasket
 - Contact Ring
 - Piston
 - Sleeve
 - Spring
 - High tension spring ring

Circuit Breaker Life Span affected due to various Factor

Electrical Endurance (Event based)

- Operating at rated current and short circuit affects the lifespan.

Circuit Breaker Life Span affected due to Electrical Factor

Electrical Endurance (Event based)

 The electrical lifetime will be reached after certain operations at the rated current or at its maximum amount of operations at the rated short-circuit breaking current or equivalent breaking duty.

Pi	roduct	Overhaul	(Criteria)	Eleo	ctrical Life Σn	ixl2
					At Rated	At 50% of
		Time Based		Rated Fault	fault current	rated fault
Breaker Type	Technology	(Years) #	Electrical(N)	current (KA)	(N)	current(N)
EDF SK 1-1	SF6/Spring	10	2,000	31.5	8	32
ELF SF 2-1®	SF6/Pneumatic	10	2,000	31.5	40	156
LTB 145 D1	SF6/Spring	10	2,000	40	13	50
ELF SL 4-1	SF6/Pneumatic	10	2,000	40	25	100
LTB 245 E1	SF6/Spring	10	2,000	50	8	32
LTB 420 E2	SF6/Spring	10	2,000	50	8	32
ELF SP 6-21/22	SF6/Pneumatic	10	2,000	50	18	70
ELF SL 6-2	SF6/Pneumatic	10	2,000	50	18	70

* Details derived from respective product manual, # May depend upon site condition N = Number of operation, I = Fault Current

Circuit Breaker Life Span affected due to Electrical Factor

Electrical Endurance (Event based)

 The diagram below is an example and shows the number of interruptions* versus short-circuit current that circuit breaker can manage, before the metal losses due to burning becomes so great that they must be replaced.

Circuit Breaker Life Span affected due to Mechanical Factor

- Erosion of the arcing contact material caused by the arc
- Contamination of the nominal contact system due to the burn off material from the arc
- Wear and tear due to mechanical operation

Circuit Breaker Life Span affected due to Various Factor

Summary

Age

- Sealing system
- Corrosion
- Grease
- SF6 gas
- Dashpot
- Catchgear

Switching frequency/current

- Nozzles and internal insulation parts
- Main/break contacts
- Absorber
- SF6 gas

Number of operations:

- Linkage
- Bearings
- Joints
- Main/break contacts
- Insulating operation rod
- Tripping spring
- Dashp

Pollution/salt:

- Third Level
- Corrosion
- Porcelains
- Sealing system
- Grease

Temperature:

- Grease
- Bearing/joints
- Sealing system

Maintenance Concept - Basis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Basis

- Life Cycle Status based Actions and Recommendations

 Ocular Inspection (Starts at 02nd year after commissioning. Frequency : Repeats every 2nd year till end of life cycle)

Criterion Visual Inspection / Check Rating Plates Check number of close-open operations Check number of failure trips (customer input necessary) Check anti-condensation heating Check density monitor Check density monitor Check condition of spring charging motor Check spring charging indication Visual Inspection of operating mechanism / Corrosion inspection Visual Inspection of Porcelain Insulators For details please refer manual

Basis

- Life Cycle Status based Actions and Recommendations
- Intermediate Inspection (Starts at 05th year after commissioning. Frequency : Repeats every 05th year till end of life cycle

Criterion
Visual Inspection / Check Rating Plates
Check number of close-open operations
Check number of failure trips (customer input necessary)
Recording of switching time *
Check anti-condensation heating
Check density monitor
Check condition of spring charging motor
Check spring charging indication
Visual Inspection of operating mechanism / Corrosion inspection
Visual Inspection of Porcelain Insulators
For details please refer manual

Basis

- Life Cycle Status based Actions and Recommendations

- Preventive maintenance

Criterion

Visual Inspection	/ Check Rating Plates
Check number of	close-open operations
Check number of	failure trips (customer input necessary)
Functional test	
Recording of swi	tching time
Contact Resistar	nce Measurement
Check anti-conde	ensation heating
Check gas superv	vision relay
Check density me	onitor
Check condition	of spring charging motor
Check spring cha	rging indication
Check Dynamic c	ontact resistance measurement
Check auxiliary s	witch
Measurement of	spring charging time
Measurement of	motor current *
Measurement of	the resistance of the coils and heaters
Visual Inspection	of operating mechanism / Corrosion inspection
Visual Inspection	of Porcelain Insulators
Dew Point measu	irement
For details pleas	e refer manual
3B	
/ 24, 2018	Slide 20

